
MASTERING
VERSION CONTROL

CHIRAG DODIYA

COMPREHENSIVE GUIDE TO BUBBLE



Table of Contents:

1. What is Version Control?
1.1 Definition and purpose
1.2 Types of version control systems

2. Key Concepts in Version Control:
2.1 Repository
2.2 Commit
2.3 Branching
2.4 Merging
2.5 Conflict resolution
2.6 Tags

3. Popular Version Control Systems:
4.1 Git & SVN

4. Version Controlling with Bubble:
4.1 Working with bubble
4.2 Ideal workflows
4.3 Tips and best practices

5. Version Control Best Practices:
5.1 Use descriptive commit messages
5.2 Regularly commit small, logical changes
5.3 Create meaningful branch names
5.4 Keep branches short-lived
5.5 Regularly update and merge with the main
branch
5.6 Utilize code review practices



6. Collaboration and Version Control:
6.1 Managing team workflows
6.2 Integrating with popular project management
tools
6.3 Collaborating effectively on code reviews
6.4 Handling contributions from multiple
developers

7. Learning Resources and Further Reading:
7.1 Bubble Documentation
7.2 Bubble Forum
7.3 Bubble Youtube Tutorials
7.4 Online courses and learning platforms
7.5 Blogs and Articles



1. What is Version Control?

Version control, also known as source control or
revision control, refers to the management and
tracking of changes made to a set of files or a
codebase over time. It is a systematic approach to
organizing and preserving different versions of files
or code, allowing developers to track modifications,
collaborate efficiently, and revert to previous states
if needed. 

Version control systems (VCS) provide a framework
for storing, managing, and retrieving different
iterations of a project, enabling teams to work
concurrently while maintaining the integrity and
traceability of the codebase.

1.1 Purpose of Version Control: 

The primary purpose of version control is to provide
a structured and organized way to manage changes in
software development projects. Here are some key
purposes and benefits of version control:

History and Accountability: Version control
captures a complete history of all changes made
to the codebase, including who made the
changes, when they were made, and why. This
historical record promotes accountability, as
developers can track and understand the
evolution of the codebase over time.

1.



Collaboration and Teamwork: Version control
facilitates collaboration among developers
working on the same project. It allows multiple
team members to work on different branches
simultaneously, merge their changes seamlessly,
and resolve conflicts efficiently.
Code Integrity and Stability: By tracking changes
and providing a structured workflow, version
control ensures that the codebase remains stable
and reliable. It helps prevent accidental or
unauthorized changes from affecting the main
codebase and provides the ability to roll back to a
known, stable state if issues arise.
Branching and Experimentation: Version control
systems enable the creation of branches, which
allow developers to work on new features or bug
fixes without affecting the main codebase.
Branches provide an isolated environment for
experimentation and development, ensuring that
changes can be tested thoroughly before merging
into the main codebase.

1.2 Types of Version Control Systems

There are two primary types of version control
systems:

1. Centralized Version Control Systems (CVCS):

CVCSs have a central server that stores the
complete history of the codebase and
manages version control operations.



Developers check out a working copy of the
codebase from the central server, make
changes locally, and then commit them back
to the central server.
Examples of CVCSs include Concurrent
Versions System (CVS) and Apache
Subversion (SVN).

2. Distributed Version Control Systems (DVCS):

DVCSs do not rely on a central server as the
sole source of truth. Instead, each developer
has a complete copy of the codebase,
including the full history, on their local
machine.
Developers can commit changes locally,
create branches, and merge changes between
branches independently.
DVCSs enable offline work, faster operations,
and greater flexibility in distributed teams.
Git is the most popular DVCS and is widely
used in the software development
community.

Both types of version control systems have their
advantages and use cases. 

Bubble follows the CVCS method to store and
manage codebase. 



Understanding the definition and purpose of version
control, as well as the types of version control
systems, forms the foundation for effectively utilizing
version control in software development projects.

2. Key Concepts in Version Control

2.1 Repository:

A repository is a central storage location
where all project files and version control
history are stored. It serves as the source of
truth for the codebase.
There are typically two types of repositories:
local and remote. Local repositories reside on
individual developers' machines, while remote
repositories are hosted on servers and enable
collaboration among team members.

2.2 Commit:

A commit represents a specific set of changes
made to the codebase at a given point in time.
When developers make changes to files in
their local repository, they create a commit to
record those changes. Each commit has a
unique identifier and is associated with a
commit message that describes the changes
made.



2.3 Branching:

Branching allows developers to create
independent lines of development within the
codebase.
By creating a branch, developers can work on
new features or bug fixes without directly
affecting the main codebase. It provides an
isolated environment for making changes and
experimenting.

2.4 Merging:

Merging brings together changes from
different branches into a single branch.
When developers complete work on a branch
and want to incorporate those changes into
the main branch, they perform a merge
operation. Merging combines the changes,
ensuring a cohesive codebase.

2.5 Conflict resolution:

Conflict resolution occurs when version
control systems encounter conflicts during
the merging process.
Conflicts happen when multiple developers
make conflicting changes to the same part of a
file. Resolving conflicts involves reviewing
conflicting changes and manually combining
them or choosing one version over the other.



2.6 Tags:

Tags are labels or markers that allow
developers to assign meaningful names to
specific points in the version control history.
Tags are commonly used to mark significant
releases, milestones, or important
checkpoints in the project's development.
They provide a way to easily reference
specific versions of the codebase.

Understanding these key concepts is crucial for
effectively utilizing version control systems. They
form the basis for managing changes, collaborating
with team members, and maintaining a structured
history of the codebase.



3. Popular Version Control Systems

There are several popular version control systems
(VCS) that are widely used in the software
development industry. Here are some of the most
popular ones:

3.1 Git

Git is a distributed version control system known for
its speed, flexibility, and robust branching and
merging capabilities.

Subversion (SVN):

Subversion, also known as SVN, is a centralized
version control system. SVN stores the complete
history of the codebase on a central server, and
developers check out a working copy from that
server.



4. Version Controlling with Bubble

Bubble, supports version control to help users
collaborate, track changes, and revert to previous
versions of their applications. Here's a breakdown of
version control with Bubble and examples of how it
works:

4.1 Working with bubble

In Bubble, version control enables you to keep track
of changes made to your application and collaborate
with other team members without the risk of
overwriting each other's work. When you save a
Bubble application, a new version is created, and you
can easily switch between different versions to see
the changes made.

Example: Let's say you are working on a web
application in Bubble, and you want to make some
significant updates to the user interface. Before
starting, you create a new version of the application
to have a clean slate to work on.

Go to your Bubble editor.1.
Click on the "Version Control" option.2.
Select "Create new version."3.
Give the version a meaningful name like "UI
Update."

4.



Now, you can work on the UI changes in the new
version without affecting the current live version of
the application. If you realize that some of the
changes are not working as expected, you can revert
to the previous version or any other version created
before.

4.2 Ideal workflows

To make the most out of version control in Bubble,
following an ideal workflow is essential. Here are
some steps to consider:

a. Feature Branches: When working on new features
or changes, create separate branches (versions) to
isolate the development process. This allows team
members to collaborate on different aspects of the
application without interfering with each other's
work.

b. Regular Commits: Make frequent commits as you
make progress. This helps in creating a detailed
history of changes and provides a safety net in case
anything goes wrong.

c. Testing and Review: Before merging changes into
the main branch or deploying them, thoroughly test
and review the application. Bubble allows you to
preview and test the application in the development
environment.



4.3 Tips and best practices

To maintain a smooth version control process in
Bubble, consider the following tips and best
practices:

a. Clear Naming Conventions: Use descriptive names
when creating versions to easily identify changes or
features being worked on. Avoid generic names like
"Version 1" or "Update."

b. Collaboration Communication: Communicate with
your team members about the changes you're making
and the versions you're working on. This helps avoid
conflicts and ensures everyone is on the same page.

c. Backing Up Data: While Bubble provides version
control, it's still essential to back up your application
data regularly. Version control helps with the
application structure, but user data and database
backups should be managed separately.

d. Version Descriptions: Add meaningful descriptions
to each version, explaining the changes made or
features added. This makes it easier to understand
the purpose of each version when looking back at the
history.

By following these guidelines and best practices, you
can leverage version control effectively in Bubble to
streamline your development process and
collaborate seamlessly with your team.



5. Version Control Best Practices

Version control best practices are guidelines and
approaches that help ensure smooth and efficient
management of code changes. By following these
practices, developers can maintain a well-organized
codebase, collaborate effectively, and minimize
potential issues. Here are some important version
control best practices:

5.1 Use descriptive commit messages:

Write clear and meaningful commit messages
that accurately describe the changes made in
the commit. 
Include relevant information, such as the
purpose of the changes, the feature or bug
being addressed, and any related issue or
ticket numbers.
Good commit messages improve code history
readability and help other developers
understand the context and purpose of the
changes.

5.2 Regularly update small, logical changes:

Commit changes frequently in smaller, self-
contained units that represent logical changes
or atomic tasks.
Avoid bundling unrelated changes into a
single commit, as it can make it harder to
understand the specific purpose and impact
of each change.



Smaller commits also make it easier to track
changes, isolate issues, and roll back if
necessary.

5.3 Create meaningful branch names:

Use descriptive branch names that clearly
indicate the purpose or feature being
developed.
Choose names that are informative, concise,
and consistent with your team's naming
conventions.
Clear branch names make it easier to
understand the purpose of a branch, locate
specific features or bug fixes, and manage
multiple branches simultaneously.

5.4 Keep branches short-lived:

Avoid keeping branches active for an
extended period. Instead, strive to merge or
integrate branches into the main branch as
soon as the work is completed.
Short-lived branches minimize the chances of
conflicts and make it easier to manage and
merge changes effectively.
If long-term development or experimentation
is required, consider creating separate long-
term branches specifically designated for
those purposes.



5.5 Regularly update and merge with the main
branch:

Stay up to date with the latest changes in the
main branch by frequently pulling or fetching
updates and merging them into your branch.
Regularly merging with the main branch helps
prevent divergence and minimizes potential
conflicts during the final merge.
It also promotes collaboration and keeps
everyone aligned with the most recent
codebase changes.

5.6 Utilize review practices:

Make reviews an integral part of the
development process. Seek feedback from
peers and review each other's progress before
merging it into the main branch.
Code reviews help identify potential issues,
ensure code quality, and promote knowledge
sharing among team members.
Use code review tools or platforms to
facilitate the review process and capture
valuable discussions and suggestions.

Implementing these version control best practices
contribute to a more organized and efficient
development workflow. It improves collaboration,
enhances code quality, and helps maintain a stable
and reliable codebase.



6. Collaboration and Version Control

Collaboration is a fundamental aspect of software
development, and version control systems play a
crucial role in facilitating effective collaboration
among team members. Here are some key points
highlighting the relationship between collaboration
and version control

6.1 Concurrent Work:

Version control systems enable multiple
developers to work on the same codebase
concurrently. Each developer can create their
own branch to make changes without directly
affecting the main codebase.
This allows team members to work
independently on different features, bug fixes,
or tasks without conflicts.
Collaboration is enhanced as developers can
work on their respective branches
simultaneously, speeding up development
and increasing productivity.



6.2 Review:

Version control systems support review
workflows, which involve team members
reviewing and providing feedback on each
other's code changes before merging them
into the main branch.
Reviews improve code quality, identify
potential issues, and encourage knowledge
sharing within the team.
Reviewers can leave comments, suggest
improvements, and discuss code changes
directly within the version control system,
creating a transparent and collaborative
review process.

6.3 Conflict Resolution:

During the process of merging branches or
when multiple developers modify the same
part of a file, conflicts can arise.
Version control systems provide mechanisms
to identify and resolve conflicts through
collaboration.
Developers can communicate and collaborate
to understand conflicting changes, make
necessary adjustments, and reach consensus
on how to combine the changes.
Conflict resolution encourages collaboration
and fosters effective communication among
team members.



6.4 Traceability and Accountability:

Version control systems maintain a detailed
history of all changes made to the codebase,
including who made the changes and when.
This historical record promotes traceability,
allowing team members to understand the
evolution of the codebase, track the origin of
specific features or bug fixes, and identify the
contributors responsible for specific changes.
The accountability provided by version
control systems encourages collaboration and
a sense of ownership among team members.

6.5 Collaboration Platforms:

Many version control systems are integrated
with collaboration platforms that provide
additional features for team collaboration.
For example, platforms like GitHub, GitLab,
and Bitbucket offer to pull request workflows,
issue tracking, project management tools, and
discussion forums that enhance collaboration
within the context of version control.
These platforms provide a centralized hub for
developers to communicate, track progress,
and collaborate on code changes, further
facilitating teamwork and collaboration.



By leveraging version control systems and their
collaborative features, software development teams
can effectively work together, streamline their
processes, improve code quality, and build robust
and reliable software products. 

Collaboration and version control go hand in hand,
creating a productive and collaborative environment
for development teams.

7. Learning Resources

When it comes to version control specifically related
to Bubble.io, a no-code platform for building web
applications, here are some learning resources and
further reading materials that can help you
understand version control in the context of Bubble:

7.1 Bubble Documentation: 

Bubble.io provides comprehensive documentation
that covers various aspects of the platform, including
version control. The documentation explains how
Bubble handles version control, allowing you to roll
back to previous versions of your application and
manage changes effectively. You can access the
documentation at https://manual.bubble.io.

7.2 Bubble Forum: 

The Bubble Forum is a community-driven platform 

http://bubble.io/
http://bubble.io/
https://manual.bubble.io/


where users can ask questions, share knowledge, and
discuss topics related to Bubble development. It's a
great place to explore version control-related
discussions and learn from the experiences of other
Bubble users. 

Visit the Bubble Forum at https://forum.bubble.io.

7.3 Bubble YouTube Tutorials: 

Bubble.io offers a YouTube channel that features a
variety of video tutorials on different aspects of the
platform, including version control. These tutorials
provide visual guidance and examples, helping you
understand how to work with version control in
Bubble. You can find the Bubble YouTube channel at
bubbleofficial.

7.4 Online Courses and Learning Platforms: 

While there may not be specific courses dedicated
solely to version control in Bubble, you can explore
broader Bubble.io courses and learning platforms like
Udemy, Coursera, or LinkedIn Learning. These
platforms often offer comprehensive courses that
cover various aspects of Bubble development,
including version control practices and strategies.

7.5 Blogs and Articles: 

Keep an eye on blogs and articles related to Bubble.io
development, as they may occasionally cover version
control topics or share best practices. 

https://forum.bubble.io/
http://bubble.io/
https://www.youtube.com/c/BubbleOfficial
http://bubble.io/
http://bubble.io/


Websites like Medium, DEV Community, and the
Bubble.io blog itself can be good sources for finding
such content.

By utilising these resources, you can gain a better
understanding of version control as it relates to
Bubble.io and learn how to effectively manage
changes and collaborate on your Bubble
applications. 

Remember to adapt general version control
principles to fit the specific features and capabilities
of the Bubble.io platform.

http://dev.to/
http://bubble.io/
http://bubble.io/
http://bubble.io/

